Connect with us

Industrial

Louisiana’s Domestic Maritime Jobs Pumping Billions Into State Economy

Why is Louisiana’s domestic maritime industry important to the state’s economy?

The State of Louisiana is the leading state in the United States for domestic maritime employment, according to a recently published report by MarineLink.com. The report shows that one in every 83 jobs in the state of Louisiana are connected or related to the maritime industry in different ways which are almost double that of other states.

Economy Contributor
Louisiana’s domestic maritime industry, according to the most recent federal figures has contributed over $11.3 billion in total economic output and posted 54,850 maritime jobs as of 2011. Maritime employment is one of the largest industries in Louisiana with oil and gas and agriculture in the lead. It includes marine terminals, shipyards, vessel operators, and workers engaged in the movement of cargo exclusively within the United States. The maritime industry generates over $3.54 billion in employment income every year.

Louisiana’s Waterway Network And Strong Regional Container Port
The navigable waterway network of over 2,800 miles in Louisiana just comes second to Alaska and it handles more waterborne commerce than any other state in the country. More than 500 million tons of domestic and foreign cargo passes through Louisiana’s waterway network every year. Aside from that, Louisiana has the strongest regional container port in the Western Hemisphere in terms of tonnage and the second busiest port in the country in terms of vessel arrivals.

Military And Commercial Shipbuilding
The US Maritime Administration also released a recent study showing that Louisiana comes in third in rank behind Virginia and California in shipbuilding, covering commercial and military construction. There are 29,250 jobs accounted for shipbuilding with more than $2.23 billion in yearly economic contribution to the state. The state of Virginia ranks first with 63,650 shipyard jobs while California has 37,140 jobs.

Tugboats, Towboats, And Barges
Tugboats safely escorting and maneuvering large containers, bulk cargo ships, and tankers in Louisiana waters are essential and crucial in keeping the vast port network inoperable conditions. Similarly, barges and towboats help move millions of barrels of petroleum products every month.

Robust Maritime Sector
The robust maritime sector in Louisiana has been the product of centuries of combined efforts and cooperation of Louisiana residents and maritime companies in forging construction and maintenance services for military and commercial vessels. This is further complemented by innovative workforce training programs offered by Delgado Community College in New Orleans and the South Central Louisiana Technical College (SCLTC) in Morgan City. The offered programs are providing training for a new generation of workers that would support the evolving industry.

Boot Camp Training And Programs For Maritime Workforce
Programs like those offered by the two colleges help position the workers with no skills and experience in the maritime industry but who are interested to enter the field. Several boot camp programs are in place to help train workers in pipe-laying and pipe-fitting jobs required in the construction or repair of a vessel. Workers are introduced to the basic shipbuilding materials such as marine pop rivets, aluminum, aluminum alloys, pumps, propellers, heat exchangers, shaft liners, etc. Workers and students participating in such programs are made to understand what is required of a ship fitter and what kind of job they can get at the end of the program. Such efforts have effectively built a strong domestic maritime front for the state of Louisiana.

Can Louisiana beat Virginia or California in shipbuilding jobs this year?

Article Sources:
http://www.americanmaritimepartnership.com
http://www.nola.com
http://www.louisianaeconomicdevelopment.com

Continue Reading
2 Comments

2 Comments

  1. Kevin

    February 16, 2015 at 1:32 pm

    It is time for the United States to recognize this global trend and use its LNG as leverage to bring to our shores new industries, hundreds of thousands of jobs, and national security modernizations befitting a global climate in which trade by sea will be a critical vulnerability for those nations who do not build, own, or operate ships. The potential is vast, and I urge you to stand strong for American shipbuilding as Prime Minister Modi has for India’s.

  2. Robert

    February 22, 2015 at 4:40 am

    It is interesting to me how Louisiana leads the United States in domestic maritime employment. It’s been said that one in every 83 jobs in the Pelican State are connected to the maritime industry in some way, almost twice as much as that of any other separate state. As one of the largest industries in Louisiana behind oil and gas, and agriculture, the diversity of jobs is impressive. That is because maritime employment includes vessel operators, marine terminals, shipyards and workers engaged in the movement of cargo exclusively within the United States.

Leave a Reply

Your email address will not be published. Required fields are marked *

Industrial

Cement Industry Exploring CO2 Pollution Reduction Strategies

Cement plays a critical role in almost all infrastructure and construction. As a result, cement making represents a massive global industry that contributes significantly to CO2 pollution. Producing cement accounts for 7 to 8 percent of annual CO2 emissions worldwide. Confronted by this large carbon footprint, the cement industry is turning to carbon-capturing techniques and renewable energy sources to reduce emissions.

CO2-Infused Concrete

One approach to carbon capture involves trapping CO2 within the cement material itself. Researchers have experimented with mineralized CO2 and mixing it into the cement and other aggregates when making concrete.

An alternative method injects CO2 into the wet mix during pouring. As the final product cures, the gas remains trapped inside the solid material. CarbonCure and Solidia already have used these methods at construction sites and in the manufacturing of precast concrete blocks.

Alternative Materials

Cement represents 80% of the CO2 emissions attributed to concrete usage. Material scientists have reduced cement needs through the use of substitutes, like iron slag and coal ash. Limestone calcined clay offers another binding agent that offers the benefit of lower production expenses.

Wet cement. Credit: ProjectManhattan

Hydrogen Fuel

In the U.K., the Energy Safety Research Institute from Swansea University has installed a green hydrogen power generator at a Heidelberg Cement facility. When using power from renewable sources, the unit splits hydrogen and oxygen atoms from water molecules. The separated hydrogen provides a clean-burning fuel to power cement processing. This reduces reliance on fossil fuels and cuts CO2 emissions. Additionally, hydrogen fuel trucks could replace diesel trucks currently used to transport cement.

Advances in concrete technologies have the potential to preserve the use of a versatile building material while addressing pollution. How effective do you think carbon capture and renewable fuels will be at decarbonizing the cement industry?

ABOUT CarbonCure

CarbonCure’s vision is to make its carbon dioxide removal technology standard for all concrete production across the globe. By realizing the full potential of CarbonCure’s portfolio of technologies, the goal of saving 500 megatonnes of embodied carbon emissions every year could be met—which would be equivalent to taking 100 million cars off the road.

In order to shrink the carbon footprint of buildings, embodied carbon in new buildings must be reduced. Embodied carbon, or the carbon emitted from the manufacturing of building materials and construction, will account for nearly 50% of carbon emissions from new construction over the next 3 decades. In any given building, concrete can contribute a minimum of 50% of the embodied carbon footprint.

ABOUT Solidia Technologies Inc.

Solidia Technologies has developed a technology platform that enables production of next-generation building and construction materials with outstanding physical properties, lower life-cycle costs and low environmental footprint. Solidia’s “Low Temperature Solidification (LTS)” technology accelerates the natural bonding process of CO2 with minerals to form solids, ensuring that it happens in hours rather than years.

In the building materials industry, this enables the production of stronger and more durable products ranging from facades to floor and roof tiles to decorative countertops. Solidia Technologies is also working to develop materials that can replace concrete. Preliminary findings show that the strength and properties of these materials far exceed those of traditional concrete. The sequestration of CO2 in the production process provides the additional benefit of creating a carbon neutral concrete replacement.

ABOUT Energy Safety Research Institute

ESRI is housed on Swansea University’s new world class Bay Campus. ESRI provides an exceptional environment for delivering cutting edge research across energy and energy safety related disciplines with a focus on the following areas:

  • Inter-conversion of waste energy and resources – the conversion of excess and wasted energy via a range of energy vectors transformations (heat-to-electricity and electricity-to-hydrogen) providing enhancing flexibility of demand and supply.
  • Green hydrocarbon – reducing the environmental impact of hydrocarbon energy sources through enhanced production, reduced resource usage, and ensuring low environmental impact of production.
  • Carbon dioxide – defining solutions to the efficient separation, the conversion to useful feedstock, and the safe long-term sequestration of CO2.
  • The next generation of energy distribution – creating an internet of energy to allow for local generation and global sharing that enables everyone to have the potential to be a player in a one world energy scheme.

Article Sources:

https://www.gasworld.com/deep-decarbonisation-of-cement-production/2020509.…
https://theconversation.com/bendable-concrete-and-other-co2-infused-cement-…
https://www.cnbc.com/2021/02/15/cement-giants-turn-to-green-hydrogen-carbon…

Continue Reading

Industrial

New Type Of Steel Offers High Strength, Ductility, And A Lower Price

Usually, higher strength steels provide less ductility, and vice-versa. Materials scientists and engineers continuously look at methods for getting the most of these two qualities within a single alloy. Researchers in China and Taiwan may have gotten closer, as they’ve developed a new metal manufacturing technique that’s said to yield steel that’s both strong and ductile, and also considerably less expensive than many industrial steels used today.

 

FileCFS stud cross sectionjpg

Image Source: Wikimedia

Strong, Ductile, Lower Cost Breakthrough Steel

The new technique has been referred to as deformed and partitioned (D&P). While the researchers have not revealed many specifics of D&P, the process yields a material that can be defined as a “breakthrough steel”, containing 10 percent manganese, 2 percent aluminum, 0.47 percent carbon, and 0.7 percent vanadium. Cold rolling and embedding of metastable austenite grains are also used in the technique, which creates, what researchers call, a highly dislocated martensite matrix. The matrix allows the steel to retain ductility even as strengthening qualities are incorporated.

Image Source: UPI

Five Times Cheaper Than Aerospace And Defense Alloys

Apart from the dual physical advantages to the new steel, the production process is cheaper than that used to create steel grades that are commonly used in aerospace, defense, and other critical applications. The research team claims that their steel costs one fifth the price of production for aerospace and mil-spec steel, while offering the same characteristics of those alloys.

How Will It Impact Industry?

The study detailing the development of the super steel was published in Science on August 24th, 2017. How the technique and the resulting steel will impact the many industries that use comparable alloys is yet to be known.

[embedyt] https://www.youtube.com/watch?v=9l7JqonyoKA[/embedyt]

What do you think of this development? Comment and let us know.

Article Sources

https://phys.org
http://www.firstpost.com
https://www.upi.com
http://science.sciencemag.org

Continue Reading

Industrial

Desktop Laser Engraving Device Scales Down Industrial Capabilities

Laser engraving is used for many different medical and manufacturing applications. The equipment needed for the capability is typically heavy, complex, and far from portable. There is a company that wants to change that by making laser engravers more compact and accessible, and potentially making the technology as popular as 3D printing.

Cubliio can be used on vertical or horizontal surfaces

Image Source: New Atlas

Portable Laser Cutting And Engraving 

Cubiio is a small, lightweight, and easily portable laser engraving and cutting tool. It has been designed to function as a desktop technology that can be easily incorporated into just about any maker studio. It’s run using software as basic as the average tablet or smartphone app. Users simply select a design to cut or engrave, place Cubiio over the work piece, and hit start. It’s no more complex than that.

Funded With Enthusiasm

Designed for hobbyists, Cubiio allows for customization of all manner of objects. The unit is comprised of a semiconductor laser source and two current-driven mirrors that direct the position of the laser according to digital commands. The device has recently gained enthusiastic backing and interest after being posted on Kickstarter and exceeding its funding goal in just days. It is now available for preorder and is expected to be available by the end of 2017.

cubiio laser engraver kickstarter dsc 0566

Image Source: Digital Trends

Laser Machining For The Masses

With its creators stating that they had to rethink the design from scratch, Cubiio could be the first of many products that bring laser machining to the masses as a creative tool. It may even follow the rise of 3D printing as a technology used for small, entrepreneurial products, creative household projects, and general novelty. The technology could even serve as an asset to manufacturers who have considered adding laser engraving to their miscellaneous capabilities but have chosen not to make an investment in larger, industrial scale equipment.

[embedyt] https://www.youtube.com/watch?v=n4fp89a-edo[/embedyt]

What are your thoughts on the Cubiio and desktop versions of industrial technology? Comment and tell us what you think.

Article Sources

http://newatlas.com
http://www.engineering.com
https://www.digitaltrends.com

 

Continue Reading