The word revolutionary is not too strong for describing how 3D printing, also known as additive manufacturing, will advance health care. The technology is expected to enable the printing of organs and tissues based on recipients’ cells and increase customization of medical tools and devices.

3D Printed Organs

Quality Crafted and Far-Reaching Press Releases That Make An Impact

Are you looking to make a big impact on your small business? Look no further than press releases - they're a powerful tool for amplifying your news! Learn how to use them to your advantage.

Organ transplant recipients must control tissue rejection with lifelong medication regimens. Additionally, the acquisition of suitable organs requires long waits. Additive manufacturing using materials generated from a recipient’s cells solves these problems. The base cell material creates a genetic match that eliminates tissue rejection. The ability to make an organ also removes waiting for a suitable donor.

An experiment at the Wake Forest Institute for Regenerative Medicine has proven the viability of organ printing. A printer made the tissue for a new bladder from a patient’s blood cells. The medical scientists have also replicated heart valves and livers.

Prosthetic Manufacturing

People in need of prosthetics often have long wait times for custom-fitted pieces. With 3D printing, prosthetics manufacturing can become widely distributed, which speeds their availability at the point of care. Costs could be reduced as well.

Customized Surgical Assistive Devices

From dental drill guides to inhalers, the advantages of 3D printing allows for clinicians to make custom devices quickly and easily. Sometimes only a single day is needed to fabricate a customized piece because 3D printing cuts prototype development time by 80 to 90 percent.

Research fellow Dr. Young Joon Seol works on a project to print experimental muscle tissue for reconstructive surgery. Credit: Army Medicine

Medical Supply Production

Demand for long cotton swabs for collecting samples for coronavirus tests has exploded due to the pandemic. The medical startup company OPT Industries had met demand with 3D printed swabs that also collect and release fluids better than their cotton counterparts. The company’s 3D printers produce swabs that are actually woven lattices of extremely thin fibers. With swab production now at 80,000 swabs a day, the company has helped to ease swab supply shortages. Automated swab printing also allows the company to produce the swabs at a competitive price.

In what ways do you think 3D printing could improve patient care and outcomes?

ABOUT Wake Forest Institute for Regenerative Medicine

The Wake Forest Institute for Regenerative Medicine (WFIRM) is recognized as an international leader in translating scientific discovery into clinical therapies. Physicians and scientists at WFIRM were the first in the world to engineer laboratory-grown organs that were successfully implanted into humans. Today, this interdisciplinary team that numbers about 400 is working to engineer more than 40 different replacement tissues and organs, and to develop healing cell therapies – all with the goal to cure, rather than merely treat, disease.

A number of the basic principles of tissue engineering and regenerative medicine were first developed at the institute. WFIRM researchers have successfully engineered replacement tissues and organs in all four categories – flat structures, tubular tissues, hollow organs and solid organs – and 15 different applications of cell/tissue therapy technologies, such as skin, urethras, cartilage, bladders, muscle, kidney, and vaginal organs, have been successfully used in human patients.

The institute, which is part of Wake Forest School of Medicine, is located in the Innovation Quarter in downtown Winston-Salem, NC.

ABOUT OPT Industries

Spun off from the MIT Media Lab, OPT Industries was founded with the goal of pushing the design and production limitations of digital manufacturing. Drawing inspiration from nature and mass manufacturing, we provide novel materials for both aesthetic use and engineered applications.

We build automated manufacturing systems that rapidly assemble mechanical metamaterials at production scale. Our manufacturing technology provides bespoke material solutions to various industries using the proprietary polymers that we have developed in-house. Each formulation is thoroughly tuned, validated and tested for its intended product application. Our generative software platform allows us to work with our clients to quickly optimize, customize, and manufacture a large range of product iterations that are instantly ready for market.

Article Sources……

Scroll to Top